skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Meesala, Srujan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The performance of superconducting quantum circuits is primarily limited by dielectric loss due to interactions with two-level systems (TLSs). State-of-the-art circuits with engineered material interfaces are approaching a limit where dielectric loss from bulk substrates plays an important role. However, a microscopic understanding of dielectric loss in crystalline substrates is still lacking. In this work, we show that boron acceptors in silicon constitute a TLS bath that leads to an energy dissipation channel for superconducting circuits. We discuss how the electronic structure of boron acceptors leads to an effective TLS response in silicon. We sweep the boron concentration in silicon and demonstrate the bulk dielectric loss limit from boron acceptors. We show that boron-induced dielectric loss can be reduced in a magnetic field due to the spin-orbit structure of boron. This work provides the first detailed microscopic description of a TLS bath for superconducting circuits and demonstrates the need for ultrahigh-purity substrates for next-generation superconducting quantum processors. Published by the American Physical Society2024 
    more » « less
  2. Modern computing and communication technologies such as supercomputers and the Internet are based on optically connected networks of microwave-frequency information processors. An analogous architecture has been proposed for quantum networks, using optical photons to distribute entanglement between remote superconducting quantum processors. Here we report a step towards such a network by observing non-classical correlations between photons in an optical link and a superconducting quantum device. We generate these states of light through a spontaneous parametric down-conversion process in a chip-scale piezo-optomechanical transducer, and we measure a microwave–optical cross-correlation exceeding the Cauchy–Schwarz classical bound for thermal states. As further evidence of the non-classical character of the microwave–optical photon pairs, we observe antibunching in the microwave state conditioned on detection of an optical photon. Such a transducer can be readily connected to an independent superconducting qubit module and serve as a key building block for optical quantum networks of microwave-frequency qubits. 
    more » « less
  3. Abstract High-power continuous-wave (CW) lasers are used in a variety of areas including industry, medicine, communications, and defense. Yet, conventional optics, which are based on multi-layer coatings, are damaged when illuminated by high-power CW laser light, primarily due to thermal loading. This hampers the effectiveness, restricts the scope and utility, and raises the cost and complexity of high-power CW laser applications. Here we demonstrate monolithic and highly reflective mirrors that operate under high-power CW laser irradiation without damage. In contrast to conventional mirrors, ours are realized by etching nanostructures into the surface of single-crystal diamond, a material with exceptional optical and thermal properties. We measure reflectivities of greater than 98% and demonstrate damage-free operation using 10 kW of CW laser light at 1070 nm, focused to a spot of 750 μm diameter. In contrast, we observe damage to a conventional dielectric mirror when illuminated by the same beam. Our results initiate a new category of optics that operate under extreme conditions, which has potential to improve or create new applications of high-power lasers. 
    more » « less
  4. Abstract Phonons are considered to be universal quantum transducers due to their ability to couple to a wide variety of quantum systems. Among these systems, solid-state point defect spins are known for being long-lived optically accessible quantum memories. Recently, it has been shown that inversion-symmetric defects in diamond, such as the negatively charged silicon vacancy center (SiV), feature spin qubits that are highly susceptible to strain. Here, we leverage this strain response to achieve coherent and low-power acoustic control of a single SiV spin, and perform acoustically driven Ramsey interferometry of a single spin. Our results demonstrate an efficient method of spin control for these systems, offering a path towards strong spin-phonon coupling and phonon-mediated hybrid quantum systems. 
    more » « less